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The flows induced by the presence of an insulating sloping boundary in a double- 
diffusive system are examined. In  the diffusive case, when the component with the 
larger diffusivity is unstably distributed, it is known that under certain circumstances 
horizontal motions are induced near the slope, and that a series of horizontal layers 
forms. We investigate the formation and properties of the layers, in particular their 
vertical scale and its dependence on the stratification and the slope angle. The scale 
of the layers is found to be a strong function of Gp, the ratio of the vertical density 
gradient of the unstably distributed component to that of the stably distributed 
component. At low values of Gp, no layering was observed; at larger values of Gp 
layers were formed, and their scale increased as Gp --f 1. A weak dependence of scale 
on slope angle was also observed with the scale diminishing as the angle of the slope 
to the horizontal increased. 

A new form of layering has been observed when the basic stratification is in the 
finger sense. At high enough values of Gp the basic stratification is unstable to finger 
motions and these exist throughout the fluid. When a slope is introduced, horizontal 
motions are set up near the slope which cause the fingers to break down and layers 
are produced. There is considerable horizontal motion in these layers as well as 
convective motions driven by the fingers in the interfaces between the layers. The 
formation of these layers and some of their properties are documented. 

1. Introduction 
It is a remarkable fact that convective motion can be produced in a stably stratified 

fluid by the mere presence of an insulating sloping boundary. Working independently, 
Phillips (1970) and Wunsch (1970) showed that in a single-component stratification 
(where the density is a function of only one physical variable such as temperature) 
there is a flow induced up the sloping boundary which provides a convective flux of 
density to balance the flux produced by molecular diffusion in the interior of the 
fluid. It is easy to see how this flow arises. At an insulating boundary the isopycnals 
must be normal to the boundary. If the boundary is at  an angle 6 to the horizontal, 
where 0 < 6 < in, the isopycnals are bent from the horizontal at the wall. Vorticity 
is produced and a slope flow results. The flow is restricted to a thin buoyancy layer 
at the wall and is steady. 

In this paper we examine the effects of a sloping boundary on a fluid which is 
stratified with two components which diffuse at different rates. Buoyancy-induced 
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motions which occur in fluids stratified in this way are known as double-diffusive 
flows. When one of the components is unstably distributed in the fluid, the energy 
stored in the distribution of this component can, in certain circumstances, be released 
and drive a wide variety of convective flows. Double-diffusive flows occur in a wide 
range of situations, in oceanography, chemical engineering and astrophysics. The 
interaction of such flows with topography and other forms of non-uniform geometry 
is likely to be important in these contexts. Furthermore, the role of horizontal non- 
uniformities in the components driving the Convection is an important but still 
largely unknown quantity, and the presence of a sloping boundary provides a 
convenient way of examining some of its properties. 

There are two classes of double-diffusive convection depending on which component 
is unstably stratified. If it  is the slower diffusing component, the convection typically 
takes the form of long vertical cells and this class is called ‘finger’ convection. On 
the other hand, if the faster diffusing component is unstably stratified, the motion 
is called ‘diffusive’. The detailed characteristics of these two types of flow can be 
quite different and the reader is referred to Turner (1973, chap. 8) for a general dis- 
cussion of their properties. 

The effects of a sloping boundary on a double-diffusive system stratified in the 
diffusive sense have been examined by Turner (1973), Turner & Chen (1974) and Chen 
& Wong (1974). They found that, even though the basic stratification was statically 
stable (density increased downwards), the initial flow was down the slope in contrast 
to the one-component case. They also observed that advection by this slope flow 
reversed the local vertical gradients and fmgers were formed near the boundary. 
Eventually this motion was found to break down into a series of horizontal layers 
which propagated away from the slope. 

Here we investigate this layer formation over a range of slope angles and density 
gradients. We also examine the flows induced when the basic stratification is in the 
finger sense. We begin our discussion by looking at some theoretical aspects of the 
flow produced by a sloping boundary in Q 2. In  Q 3 the experimental methods used to 
investigate these motions are explained and the results given in $4.  A comparison 
of the theory and experiments is given in Q 5, and some conclusions are drawn in Q 6. 

2. Basic flow: asymptotic solutions 
Consider a fluid stratified with two components T and S with coefficients of molecular 

diffusion KT and K ~ ,  respectively. For definiteness we take T f Ks/KT such that 
0 c 7 < 1.  We suppose that in the undisturbed case the vertical density gradient 
produced by each component is separately constant, so that we can write the density 
distribution as 

p = p o ( l + y T ~ + T + y , y ~ + S ) .  (2.1) 

Here po is a mean density, p o ~ T , s  is the initial density gradient due to T ,  S, and T 
and 8 are perturbations about this initial state. These deviations from the initial state 
are brought about by an insulating sloping boundary a t  an angle 8 to the horizontal 
introduced at time t = 0. We also assume that the fluid is infinite in vertical and 
horizontal extent, except for the presence of the slope, and that the slope is infinite 
in they direction (see figure 1). 
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FIauRE 1. A definition sketch showing the relation of the co-ordinate axes to the slope. The 
initial diffusion-induced downward distortions of the isopleths of T and S are also shown. 

We impose the condition that the flow be stably stratified, i.e. yT + ys < 0, and we 
look for flows which are independent of the co-ordinate along the slope c. The equations 
governing such motions are 

ut = vuq,-gsin8(T+S), (2.2) 

where v is the coefficient of kinematic viscosity and subscripts represent partial dif- 
ferentiation. The boundary conditions are 

u = 0, T,, = - yT COB 8, S, = - 7s COB 8 on 71 = 0, (2.5) 

u,T,S-+O as q-foo. (2.6) 
It is a simple matter to show that (2.2)-(2.4) have no steady-state solutions which 
satisfy all the boundary conditions. Assuming a/at = 0, we readily obtain a solution 
which vanishes at infinity, namely 

u = A e-’q sin Mq, 1 

where 

AyT sin 8 Ays sin 8 
T =  e-Mq cos M y ,  S = e- VcosMq,  KT M 2  2Kg M 2  

M4 = - (G YT + 3/S --) gsin2e 4v. 

The wall boundary conditions (2.5) on T and S finally imply 

A = ~ M K ~ ~  COB 8, A = ~ M K ,  COB 8, 

which are inconsistent unless K ~ ,  = K ~ .  Hence there is no steady-state solution for 
7* 1. 

It is instructive to examine the physical cause of this behaviour. If the fluid is not 
semi-infinite in the q direction but is confined to a slot between parallel sloping walls 
a finite distance apart, a steady-state solution can be found (Chen 1975). This steady 
state is achieved by distorting the isopleths of T and 8 right across the slot. In  the 



7 60 P. F .  Linden and J .  E .  Weber 

semi-inkite case there is always a region far enough from the slope where the original 
gradients of T and S are undisturbed and where the original diffusive vertical fluxes 
exist. In  the one-component case Phillips (1970) showed that a steady state was 
achieved even in a semi-infinite fluid by balancing the vertical diffusive flux in the 
interior by the vertical component of a convective flow along the slope. In  the two- 
component case this balance can never be achieved by a single flow as it is necessary 
to balance two interior fluxes. Not only does this preclude a steady state but it also 
means that horizontal differences in T, S and density will develop in the fluid which 
can make the slope flow unstable. It is these instabilities which we shall examine 
experimentally, but before doing so, we shall consider the unsteady slope flow in a 
little more detail. 

We solve (2.2)-(2.4) asymptotically for small and large times, by taking the 
appropriate limits of the Laplace transform of these equations. The solution for 
small times, which is just the initial diffusive response to the no-flux condition a t  the 
wall, is 

(2.10) 

where h = - yT/ys, u = V / K T  and Perfc represents the nth repeated integral of the 
complementary error function. The solutions for T + yT z and S + ys z are sketched on 
figure 1. The horizontal isopleths bend down to meet the slope at right angles, the 
bending occurring in diffusive boundary layers of thickness S, N (KT t ) i  and Ss N ( K ~  t)*. 
This distortion sets up a horizontal density gradient, which generates vorticity, 
resulting in the slope flow u given by (2.9). 

The direction of this initial flow depends on the details of the stratification. For 
example, suppose the basic stratification is diffusive (i.e. yT > 0, ys < 0). Then the 
downward distortion of T near the wall increases the density there, which is offset 
by a reduction due to distortion of the S field. Depending on the relative magnitudes 
of yT and ys we see that it is possible to have either upflows or downflows near the 
slope. Quantitatively, a, series development of (2.9) for small shows that the flow 
near the slope is down when h > F and up when h < F, where 

(2.12) 

As U+CQ, F + T ,  while for CT finite and T+O, F + ( g - i ) ~ / ( g - d ) .  For sugar and 
salt in water P = 0.34. On the other hand, if the basic stratification is finger like, a 
series development shows that the flow is always up the slope. This is easily seen from 
figure 1, as > "ySl and so the greater distortion of the T field ensures that the 
net density decreases near the wall compared with the undisturbed density a t  that 
level. 

P = 7(g - 1) (d - Ti)/(& - 1) (a- 7) .  
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The solution for large times is given by 

(2.13) 

where M is defined by (2.8). This solution is valid for all A in the diffusive case ( A  < l), 
and for h > 7-1 in the finger case. For 1 < h < 7-1 the solution is invalid, but in this 
case the basic stratification is unstable to infinitesimal disturbances of the finger type 
(see Turner 1973), and so the basic state described by (2.1) does not exist. 

The large time solution (2.13)-(2.15) consists of two parts. One is a stationary 
buoyancy-layer type of solution analogous to the one-component case. Since a single 
flow cannot balance two interior diffusive fluxes, the solution will always contain a 
transient part. It is worth noting, however, that the generation of vorticity due to the 
transient T and S parts tends to vanish outside the buoyancy layer, such that the 
flow is confined to this boundary region. The typical layer thickness is M-l, and the 
flow is, in all cases, up the slope. In  the limit 7 = 1, A = 0, we reduce to the one- 
component stratification, and the large time solution reduces to the steady-state 
solution found by Phillips (1970). For the diffusive stratification for h > F we see that 
the flow is init.ially down the slope and then must reverse a t  some later time in order 
to reach the final state described by (2.13). This reversal in the direction of motion 
was also found in a tilted slot by Chen (1975). 

There is one other class of flows which is related to those described here. It occurs 
when a stable solute gradient (e.g. salt) is heated at B side boundary. There is upflow 
near the heated boundary and this flow distorts the isohalines near the wall. For 
sufficiently large Rayleigh numbers (i.e. side-wall temperatures) this basic flow 
becomes unstable owing to the fact that KT $: K ~ ,  and a motion develops which takes 
the form of horizontal layers intruding into the interior. The linear stability of this 
system has been studied by Thorpe, Hutt & Soulsby (1969) and the finite amplitude 
motions by Chen, Briggs & Wirtz (1971). 

In the heated side wall experiments of Chen et al. (1971) the vertical scale of the 
layers which form is of the order of AT/(dS/dz) ,  where AT is the horizontal temperature 
difference imposed a t  the wall and dS/dz the interior salinity gradient, both in density 
units. The similarity with the sloping boundary experiments arises from the fact that 
the preEence of an insulating slope is equivalent to applying a constant horizontal 
flux of T and S to the system (see the appendix). 
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3. The experimental method 
The experimental techniques used to examine the flows induced in a two-component 

stratified fluid are standard and so only a brief description of them will be given here. 
In  all the experiments sugar and salt were used as the two diffusing components. In  
the notation of 4 2, salt is the faster diffusing component, denoted by T, and sugar the 
slower diffusing component S: K~ = 0-5 x 1 0 - 5 ~ m ~ s - ~ ,  K~ = 1.5 x 10-5cm2s-l and 
r = K ~ / K ~  = 0.33. 

The experiments were carried out in a rectangular Perspex tank of length 91.5 cm, 
width 7.6 cm and depth 30.5 cm. The tank was filled to a depth of about 25 cm with 
uniform opposing gradients of sugar and salt using a 'double-bucket ' filling technique 
(Oster 1965). It took about 1-2 hours to fill the tank. The solutions were allowed to 
stand after preparation until they had reached room temperature. The density of 
each solution was in the range 0~998-1~010gmml-L, and was measured with a hydro- 
meter accurate to 0.5 x0. 

Two forms of sugar-salt stratification were used: in the diffusive case the saccharinity 
decreased whilst the salinity increased with height, and vice versa for the finger case. 
Two parameters are required to specify the stratification in each case. We shall use 
N = ( -gpg1dpldz)4, the buoyancy frequency of the density gradient, and Gp, the 
ratio of the density gradients of the two components. This means in the notation of 
$ 2  that for the diffusive case Gp = 1 A ] ,  whilst for the finger case Gp = lhl-'. Defined 
in this way 0 < Gp < 1, the upper limit being attained when the two components 
contribute equally to the density gradient and N = 0. In  the case Gp = 0 there is no 
unstable component and double-diffusive effects are absent. Situations where Gp > 1 
correspond to the density increasing with height and are excluded from the discussion. 
Therefore the magnitude of Gp gives an indication of the relative importance of 
double-diffusive effects, and the similarities which will emerge between the finger 
and diffusive cases are most readily brought out by the use of Gp in this way. Any 
ambiguities which may arise from the use of one symbol for two situations should be 
resolved by the immediate context of its use. 

Implicit in the above method of producing constant vertical gradients of the various 
components is the requirement that the cross-sectional area of the tank be uniform 
with height. The presence of a single sloping wall will violate this condition. In  order 
to overcome this difficulty two methods of introducing a sloping boundary into the 
fluid were used. In  the fist, the tank was filled and subsequently a slope was intro- 
duced by sliding a metal plate down between two slots milled in the side walls of the 
tank (see figure 3, plate 1). The slots were a t  45" to the horizontal and so to examine 
the effects of slopes a t  other angles a second method was used. A metal plate slightly 
smaller than the width of the tank was inserted at the required angle and held in place 
by a small wedge. Thus, over most of the depth there was a small (0.5 cm) gap between 
the slope and one of the side walls of the tank, and the tank could now be filled in the 
usual manner. By comparing the two methods we were able to confirm the conjecture 
made by Turner & Chen (1974) that the disturbances produced when the slope was 
inserted after filling had little effect on the flow which subsequently developed. 

Unfortunately, it  was possible to fill the tank with the slope in position only for the 
diffusive case. In  order to get a horizontally uniform finger stratification it was 
necessary to add fluid evenly along the full length of the tank. This was achieved by 
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using three floats which covered the water surface and by supplying each of them 
with fluid independently. So for the finger case the slope was always inserted once 
the tank was full and only one angle (0 = $ T )  was used. 

A shadowgraph was used, in conjunction with observations of the distortions of 
dye traces, to visualize the flows. Both still and time-lapse cind photography were 
used to record the motions. Photographs of the dye traces at subsequent times, which 
were recorded by a digital clock accurate to O-ls, gave quantitative information 
about the velocity fields, while many of the qualitative observations come from 
viewing the time-lapse movies. 

Before describing the results in detail it is appropriate to say a little about the 
interpretation of the data and the errors involved in the measurements. The experi- 
ments consisted of setting up the initial stratification and then watching the motion 
which developed as it interacted with the slope. Each experiment was essentially 
transient as there was no mechanism for maintaining the initial vertical gradients 
(even in the mean). Therefore recognition of the different phases of an experiment 
and comparison of different experiments in the same phase is a somewhat subjective 
process. Furthermore, many of the motions observed appear to be turbulent. Con- 
sequently, the errors involved in the actual measurements, such as parallax in the 
photographs of the dye traces, inaccuracies in reading the hydrometers and so on, are 
normally negligible when compared with the more serious, and less easily quantifiable, 
uncertainties resulting from the transient and turbulent nature of the flows. This is 
not to say that it is impossible to be quantitative and we have put error bars on the 
data wherever appropriate, but these difficulties in interpretation should be borne in 
mind. Some further discussion of the variability of the motions will be given when 
the results are presented. 

4. The experimental results 
Diffusive stratiJicution 

The flow induced in a diffusive stratification by a sloping boundary is a strong function 
of the ratio of the interior density gradients Gp. At low values of Gp (the meaning of 
low in this context will be quantified later) there was almost no observable motion, 
but in some cases very weak layers formed immediately adjacent to the slope. An 
example of this weak layering is shown on figure 2 (plate 1).  In  this case Gp = 0.87 
and 8 = in. The layers, having a typical vertical scale of about 0-4 cm, appeared to 
form spontaneously along the length of the plate and they remained unchanged for a 
day or so until they were destroyed by layers growing down from the top of the tank. 
These larger-scale layers appear to result from evaporation at the free surface and 
are no% related to the presence of the slope: some of them can be seen a t  the top of the 
fluid. 

At high values of Gp the sequence of events is much different. Consider for the 
moment the upper side of the slope (i.e. the left-hand side of the photographs). The 
initial response is for a downflow to develop near the slope. This reverses the local 
vertical gradients of T and S near the wall and fingers are produced locally. These 
fingers, which transport dense fluid downwards, advect heavy fluid onto the slope 
and reinforce the downflow. Evidence of this downflow and the fingers can be seen 
on figure 3 (plate 1). Although not directly obvious from a still photograph, the effects 
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of the downflow can be seen by the presence of structure beneath the end of the slope. 
This structure was produced by dense fluid running down and off the end of the slope. 
On the underside of the slope the flow is upwards, and again the local T and S gradients 
are reversed and fingers form. Dye deposited on the upper side of the slope was 
advected down the slope and then advected upwards on the underside as can be seen 
on figure 3. 

The next stage in the process is the breakdown of this slope flow and the formation 
of horizontal layers. The beginnings of this can be seen by the horizontal advection 
of the dye in figure 3. A more advanced stage of the layer formation is shown on 
figure 4 (plate 2). The slope flow has ceased on the top of the upper side of the plate 
but still exists further down. The vertical transport from the slope by the fingers 
near the bottom can be seen from the spreading of the dye. On the underside of the 
slope layers have formed near the bottom but the slope flow and fingers persist a t  the 
top. The layers have the characteristic form found by Turner & Chen (1974) of a very 
sharp diffusive interface on one side and a finger interface on the other. At the ends 
of the layers there are often, but not always, well defined ‘noses’. These propagate 
across the tank until they reach an end wall. The distortion of the vertical dye streaks 
shows the large shears (0.1 s-l) across the interface, and the streak on the right shows 
that disturbances propagate ahead of the advancing layers. 

Figure 5 (plate 2) shows two later stages of a similar experiment. In  figure 5(4,  
although a large number of layers have formed, the system is still very active with 
typical velocities of around 0.02 cm s-l. Vigorous convection is taking place in the 
layer and several of the interfaces are exhibiting signs of breaking down in a manner 
very reminiscent of that found in other diffusive situations (see Linden 1976). There 
is still considerable shear across the interfaces and once the layer has reached the end 
wall of the tank the motion is such that the circulation is in the same sense aa the 
original slope flow, giving clockwise circulation on both sides of the slope. At a much 
later time the irregularities in the layers disappear and we are left with a regular 
structure as can be seen on figure 5 ( b ) .  This set of layers persisted for several days 
with the interfaces eventually becoming weaker as a result of molecular diffusion. 

These two examples of the different types of layering are typical of all the experi- 
ments, with two exceptions. At even lower values of Gp < 0.7 no layering was observed 
a t  all. I n  some cases, particularly for other slope angles, an intermediate form was 
observed. A weak slope flow induced weak fingers which eventually died out without 
producing the active layers shown on figures 3, 4 and 5. This intermediate case 
appeared to represent the transition from low-Gp to high-Gp systems and did not 
reveal any new features. 

The most obvious difference between low-Gp layers (figure 2) and high-Gp layers 
(figure 5 )  is their scale. Both the vertical and the horizontal scale of the layers is 
greater in the high-Gp case. On figure 6 we show the mean vertical scale m of the layers 
plotted against 1 - Gp for a fixed slope angle 0 = IT. We plot the data in this way in 
order to emphasize the fact that we need Gp > 0-7 to get layers at all. The determina- 
tion of E depends on what stage of the formation process is considered and we have 
chosen the one corresponding to figure 5 (b ) .  Before this time there are irregular and 
incomplete layers which make E a function of horizontal position. Later, there is B 

gradual increase in scale as some layers merge, but this occurs on a much Ionger time 
scale, typically several hours. 



Journal qf Fluid Mechanics, Vol. 81, part 4 Plate 1 

FIGURE 2 .  Layers observed for a diffusive stratification with N = 0.66rad/s, Gp = 0.87 and 
0 = in. In  this run the tank was filled with the slope fixed in position (held by the wedge visible 
above the surface). In  the lower right corner can be seen the time in hours and minutes since the 
filling of the tank began. The tape on the left-hand side is offset in 10 cm lengths. 

FIGURE 3. The flow induced by the slope in a diffusive stratification with N = 0.68 rad/s, Gp = 0.90 
and 0 = &T. In  this case the slope was inserted only part of the way into the tank. The slope can 
be identified by the dark line on the shadowgraph and its end is marked by an arrow, and the 
slots into which it is fitted are visible in the lower part of the photograph. The clock in this case 
records the hours, minutes, seconds and tenths since the filling began. 

LINDEN AND WEBER (Facing p .  764) 
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FIGURE 4. An intermediate stage in the layer formation in a diffusive stratification with N = 0.60 
rad/s, Gp = 0.89 and 0 = $n. The tank was filled before the slope was inserted. The time on the 
clock registers the elapsed time since the slope was introduced. The tape on the left-hand side is 
offset in 10 cm lengths. 

(b)  
FIGURE 5. For legend see facing page. 

LINDEN AND WEBER 
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We see that there is a rapid increase in scale as Gp -t 1, a phenomenon which has 
been observed in other configurations (Linden 1976). Unfortunately, owing to the 
inherent instability of the basic stratification as Gp-t 1, the maximum value which 
could be attained was Gp = 0.95. For values of Gp < 0.95 there was no evidence of 
instability provided the sloping boundary was not introduced. In  the range 

0.89 < Gp < 0.95 

fingers were observed once the slope was introduced, whilst for Gp < 0.87 the layers 
formed in the absence of fingers as shown in figure 2. 

The effect of variation in the slope angle 8 is shown on figure 7, which is a plot of 
against 8 for a fixed value of the gradient ratio Gp = 0.9. From this figure we see 

that the presence or absence of fingers depends on 8 as well as on Gp, with the most 
vigorous finger activity occurring for +n < 8 < ml3.6. The scale of the layers decreases 
as 8 increases with no layers observed for 8 > in. At very low slope angles (8 < s'g-n) 
layers are not formed. This is due to the fact that the advection terms tend to vanish 
in this limit; see (2.2)-(2.4). We also note that the terminology of low-Gp and high-Gp 
stratifications used above is appropriate only for a fixed angle. 

The variation in the horizontal scale of the layers is much more difficult to quantify. 
In the weak layering case the layers do not extend very far from the slope (figure 2) 
and their length is not easily determined. In  the strong layering case the layers always 
extended to the end walls of the tank. This large horizontal extent in the latter case 
seems to be connected with the presence of the noses at the front of the extending 
layers. Turner & Chen (1974) mention that in some cases the noses appear to propagate 
independently of the slope flow and can apparently convert the potential energy 
stored in the diffusive stratification into kinetic energy to drive their own motions. 
We also observed this phenomenon and feel that the noses are in themselves sufficiently 
interesting for us to document some of their properties here. 

The form of the noses varies from the relatively smooth type shown on figure 4 
to the more turbulent structures, an example of which is given on figure 8 (plate 3). 
In each case the front of the nose is quite sharply defined on the shadowgraph, and 
appears to be two-dimensional, even though the motion inside the nose is quite 
vigorous. Of the two interfaces associated with the nose one is diffusive and relatively 
sharp whilst the other contains fingers and can be rather poorly defined. There is 
motion inside the nose driven, a t  least in part, by the convective fluxes across these 
interfaces. The speed of this interior circulation is considerably greater than the 
propagation velocity of the nose U ,  varying from about 2-5 times U .  

The horizontal displacements of some typical hoses are plotted against time on 

LEGEND TO FIGURE 5: 
FIGURE 6. The final stages in the production of a set of layers for the diffusive stratification 
N = 0.48 rad/s, Gp = 0-95 and B = 2n. The tank was fiIled with the slope in position and the clock 
records the time since the filling began. The specks concentrated near some of the interfaces in 
(a) are the residue of the dye introduced in (a). In (b)  it is seen that the interfaces are at exactly 
the same depths on either side of the slope. This is a result of the fact that the small gap on one 
side of the slope, which occurs when the slope is fixed in position before the tank is filled, allows 
the motions on each side to be influenced by those on the other. This influence does not affect the 
early stage of the layer formation (see (a)) but does lead to the symmetry at much larger times. 
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0.. 
0.01 0. I 

1 -Gp 

FIGURE 6. A log-log plot of the mean vertical scale of the layers A (cm) against 1 - Gp for a fixed 
angle 8 = in. The closed circles imply runs where fingers were observed and open circles runs 
where no fingers were observed. The error bars represent two standard deviations about the mean 
of A. The solid line is a line of slope - 0.8. 

f 
pi 

0 t. 4. 4. 4. 
B (rad) 

FIGURE 7. The mean vertical scale of the layers 5 (om) plotted against the slope angle 8, for fixed 
Gp = 0.90. The symbols have the same meaning as on figure 8, except for the half-closed circles, 
which indicate the transition from strong-finger to no-finger slope flows. 
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FIGURE 9. The horizontal displacement of a nose plotted against time. Three different values of 
Gp of the basic stratification are shown. The straight lines are fitted through the points by eye. 

figure 9. We see that to a good approximation the horizontal velocity is constant. 
The motion of a nose is not completely horizontal as the mean density inside the nose 
changes with time owing to the fluxes across the interfaces. However, the vertical 
motion is quite small compared with the horizontal displacement. Figure 10 shows 
the horizontal velocity of the nose U ,  non-dimensionalized by the depth of the layer 
behind the nose h and the buoyancy frequency N of the stratification, plotted against 
the ratio of the density gradients Gp. There is a considerable amount of scatter in the 
data but two facts emerge. First, the non-dimensional velocity increases as Gp 
approaches unity, and second, U / N h  N 5 x 10-3 in order of magnitude. We shall 
comment further on these results in 5 5. 

Finger stratification 
All but one of the experiments carried out with finger stratification had supercritical 
density ratios Gp > r.  (The exception was one case run with Gp = 0.29; none of the 
motions described below were observed in this case and we shall consider it no further.) 
This meant that the basic stratification was unstable to finger motions and fingers 
were present throughout the tank before the slope was inserted. Another implication 
of the supercritical nature of the basic stratification is that none of the analysis 
described in 0 2 applies to these situations. 
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FIQURE 10. The horizontal velocity of the nose U non-dimensionalized with respect to the 
buoyancy frequency N and the thickness h of the layer behind the nose plotted against the 
gradient density ratio Gp. The values of U are determined from the slope of displacement v8. 
time plots such as those shown on figure 9. The length of the error bars reflects the extreme 
values of UlNh which could be reasonably achieved by fitting a different line through the points 
or owing to variations in h. Note that values of Gp start at 0.85. 

An example of the motions produced by the slope is shown on figure 11 (plate 3). 
This photograph, taken nearly 79 min after the slope was inserted into a uniform field 
of fingers with Gp = 0.91, shows a number of horizontal layers separated by interfaces 
containing fingers. The sequence of events leading up to the formation of these layers 
is as follows. The downward advection of dense fluid by the fingers leads to an accu- 
mulation of this dense fluid on the upper side of the slope and adownslope flow develops. 
Evidence of this slope flow can be seen in figure 11 from the dye which was added about 
half way down the slope. This dye has been advected down the slope and has collected 
in a pool at the bottom. The dye can also be seen to have been advected vertically 
by the fingers above the lower half of the slope. On the underside of the slope advection 
of less dense fluid upwards by the fingers causes an upslope flow there. 

During this stage there is also a weakening of the fingers at the top of the upper 
side of the slope and beneath the slope in the corner near the bottom of the tank. T4h, 
weakening appears to result from the fact that the presence of the slope cuts off the 
supply of sugar and salt to the fingers in these corner regions. This reduction in 
intensity was observed first in the corners and then spread slowly outwards with 
increasing time. This feature can be seen from the lack of small-scale vertical structure 
in these corner regions on figure 11. 

The layers were first noticeable in this particular case about 40 min after the slope 
was inserted. At this time some horizontal distortion of the fingers near the slope 
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-P 

Plate 3 

5 cm 

FIGURE 8. A close-up of a turbulent nose in a diffusive stratification with Gp = 0.95. The nose 
is propagating from left to right. At this high value of Gp the distinction between the two kinds 
of interface seen behind the noses shown on figure 4 is not as clear, owing to the very turbulent 
motion in the nose itself. 

10 cm I 
FIGURE 11. Layers formed by a sloping boundary in a finger stratification. In this case Gp = 0.91, 

0 = &r and the clock shows the time elapsed since the slope was inserted. 

LINDEN AND WEBER (Pacing p .  768) 
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FIGURE 12. The large vertical shears and the finite vertical extent of the layers are seen from 
the distortions of these three vertical dye lines simultaneously put into the tank. In  this run 
Gp = 0.69 and B = in. 

FIGURE 13. A large-scale layer formed by the slope flow in 
a finger stratification with Gp = 0.97 and 19 5 an. 

LTNDEN AND WEBER 
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was observed. This distortion increased in amplitude and eventually led to the break- 
down of the fingers into a series of layers, separated by interfaces containing fingers. 
These interfaces extended right to the slope, thereby cutting off the slope flow, but 
the circulation in each individual layer was in the same sense as the original slope flow. 

The fact that the circulation is in the same sense in each layer means that there 
are large shears across the interface. These shears are easily visualized by observing 
the distortion of vertical dye lines such as those shown on figure I2 (plate 4). In  
contrast to the diffusive case, the layers do not always reach the end walls of the tank. 
In  figure 12 it can be seen that the magnitude of the shear decreases with increasing 
distance from the slope, with the dye line on the left showing almost no evidence of 
any layers. As this run developed in time the layers reduced in intensity and eventually 
weak finger motions re-established themselves over most of the tank, without any 
of the layers having reached the end walls of the tank. 

A curious feature of these flQws is that there were often large regions where no 
layers formed and the vertical motions of the fingers were undisturbed even quite 
close to the slope. Examples of these regions can be seen in the finger structure in 
figure 11 and in the lower part of the central dye streak in figure 12. These regions 
frequently remained undisturbed throughout an experiment and in the majority of 
cases exhibited the asymmetry of occurring near the bottom of the tank on the upper 
side of the slope and near the top of the tank on the underside. 

At highly supercritical density ratios the breakdown of the finger structure into 
layers was observed to take a more dramatic form, an example of which is shown on 
figure 13 (plate 4). This figure shows the layering produced in a finger stratification 
with Gp == 0.97. As well as exhibiting layers of the form shown on figures 11 and 12, 
we see that there is a layer of much larger scale underneath the slope. This layer 
extends to the end wall of the tank (not visible in the photograph) and the motions 
inside the layer are extremely vigorous, as can be seen from the fact that the dye, 
visible above and below the layer, has been dispersed completely inside the layer 
itself. This form of layering was observed only for stratifications with an initial value 
of Gp > 0.95 and in every case the layer extended to the end wall of the tank. These 
layers are very reminiscent of those observed by Turner & Chen (1974) when a field 
of fingers at  high Gp was disturbed mechanically (see figure 6 of their paper). 

5. Discussion 
There are many similarities, particularly in their gross properties, between diffusive 

and finger convection. One striking example is the fact that in both cases convection 
can occur when the fluid is stably stratified (the density increases with depth), and 
the net effect of the convection, when all the boundaries of the fluid are insulating, 
is to increase the magnitude of the mean vertical density gradient. Therefore, it  is 
not very surprising that there are similarities between the motions produced in finger 
and diffusive stratifications by a sloping boundary. The experiments also revealed 
several differences between the two cases and so we begin this discussion with a quali- 
tative comparison of the two situations. For the sake of convenience we consider 
only the upper side of the slope (figure 1).  

The first observable response of both systems to the presence of the slope was the 
development of a flow near the slope. This flow was down the slope for the supercritical 
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finger stratifications, and either up the slope a t  low Gp or down the slope at high Gp 
in the diffusive case. The variation in direction of the diffusive slope flow is in general 
agreement with the theoretical prediction (2.12), although the precise details of the 
transition between the directions of the two flows was not checked experimentally. 
At high enough values of Gp fingers were formed locally near the slope. An examination 
of the theoretical vertical T and S gradients near the wall either for the initial diffusive 
response (2.10) and (2.11), or for the large time response (2.14) and (2.15) shows that 
in both cases the slope flow is not unstable to fingers, i.e. that we nowhere have T, < 0 
and S, > 0, which is a necessary condition for fingers to occur. Thus the appearance of 
fingers must occur at an intermediate time when advection by the downslope flow 
reverses the vertical T and S gradients near the wall. Unfortunately, we are unable 
to write down the solution for this regime explicitly, but the fact that the large time 
solution always predicts an upslope flow implies that this was not realized in practice 
when Gp was large enough. Before this flow could develop, fingers formed which 
reinforced the downslope flow. Thus, a t  high enough Gp, both systems have a down- 
slope flow fed from above by fingers. 

This general pattern continues for some time until horizontal motions develop 
which eventually produce horizontal layers. The layers are separated by relatively 
sharp interfaces which, in general, extend right to the slope. The slope flow is cut 
off into a series of cells with circulations in each layer in the same sense as the original 
slope flow. The interfaces contain fingers when the initial stratification is finger like, 
and a diffusive stratification breaks down into a series of diffusive interfaces. 

It is a simple matter to see, in broad terms, how these layers arise. In  5 2 we explained 
that the vertical density flux is different over the slope from its value in the interior 
of the fluid. Therefore horizontal density differences develop which can drive horizontal 
motions. However, the details of the breakdown of the slope flow are much less readily 
revealed. At high Gp the instability develops on a slope flow fed by fingers in both 
cases and appears to be a finite amplitude phenomenon. For low-Gp diffusive stratifica- 
tion the formation process seems to be connected with the sideways diffusive mechanism 
discussed by Thorpe et al. (1969) (see the appendix for details). 

An obvious difference between the overall structure of the finger and diffusive 
layers is their horizontal extent. In the finger case the layers usually did not reach the 
end walls of the tank, but in the diffusive case, provided the slope flow was unstable 
to fingers, they always did. The reason for this different behaviour is not completely 
clear but it appears to be connected with the mechanism of the propagation of the layers 
from the slope into the interior. In  the finger case this propagation takes place through 
the disruption of the fingers by the turbulent convective motions in the layer near the 
slope. The presence of the slope appears to be crucial to the continuation of this process 
as it provides, in each layer, a way to orient this convection into a net circulation. 

In  the diffusive case, on the other hand, the layers, once initiated, seem to be self- 
propagating with the slope playing only a minor role. This propagation is produced 
by the overturning associated with the nose, which is not found in the fmger case, 
and which can release the energy stored in the unstably distributed component. The 
detailed behaviour of the nose is interesting and complicated. We restrict ourselves 
here to a couple of general points. As we see from the dye streaks on figure 4 (plate 2) 
a nose propagates into a stratified region which exhibits the familiar effects of up- 
stream influence, which have produced velocity shears ahead of the nose. This 
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upstream inflfience is produced by waves propagating ahead of the nose. The speed 
of long waves Nh is considerably greater than the horizontal velocity of the nose: 
U N 6 x (Nh)  (see figure 10). The double-diffusive character of the flow is also 
evident from figure 10. As Gp increases the non-dimensional nose speed increases, as 
presumably there is more energy available in the stratification to drive the flow. 

We have now discussed the obvious similarities and differences between the finger 
and diffusive stratifications. We conclude this section with some additional remarks 
on the details of the diffusive layers. Probably the most pressing question yet to be 
resolved in this context is that of the vertical scale of the layers. (The question also 
applies to the finger stratification but we have insufficient information to warrant 
discussing it in detail at this stage.) 

In  5 2 we mentioned that the layers which are formed by heating a stable salinity 
gradient laterally bear a strong resemblance to the diffusive case. In  that situation 
the layer thickness scales with the length AT(dS/dz)-l ,  where AT is the horizontal 
temperature difference in density units and dS/dz the interior density gradient. The 
current situation is equivalent to imposing a fixed heat flux rather than a fixed tem- 
perature difference. Also, when fingers occur near the slope, it is extremely difficult 
to estimate the equivalent horizontal temperature difference, and so this simple scaling 
is not available. 

When Gp is large enough for fingers to be produced by the slope flow (Gp > 0.89) 
the mean thickness of the layers E is proportional to (1 - Gp)p, where a least-squares 
fit to the data shows that p = - 0.8 f 0.1 (figure 6). This increase in vertical scale as 
Gp -+ 1 reflects the fact that the vertical density gradient tends to zero in that limit. 

It is interesting to note the similarity between this dependence on Gp and that 
found in an experiment where layers were formed sequentially in a double gradient 
diffusive stratification by imposing an unstable buoyancy flux at the top (Linden 
1976). In  the latter case it was found that the thickness of the first layer was pro- 
portional to (1  - Gp)-j. It was also shown in that case that as Gp + 1 the main con- 
tribution to the energy required to produce the layers came from the interior gradients, 
as is the case in these present experiments. 

One final comment on the scale of the layers concerns the influence of the end walls 
of the tank. It has been observed previously (Turner & Chen 1974, figure 9 d )  that 
the vertical scale is different on opposite sides of the slope, and this may be due to the 
different distances to the end walls on either side of the slope. We also observed this 
difference in scales on one occasion but could find no systematic variation. We also 
found no systematic variation of layer scale with depth which might result from the 
variation in distance from the end walls to the slope. We have not, however, made a 
complete investigation of the effects of the finite dimensions of the container. 

6. Conclusions 
We have examined, both theoretically and experimentally, the motions induced in a 

fluid stratified with two components by the presence of an insulating sloping boundary. 
We find that the slope induces a flow along its length and that this flow can become 
unstable. As a result of this instability horizontal motions are produced which pene- 
trate into the interior of the fluid. The stratification in the interior is altered by these 
motions and the final state consists of layers separated by relatively sharp interfaces. 
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The discovery that layers are formed when the basic stratification is finger like 
(i.e. the slower diffusing component is unstably distributed) opens up a new class of 
double-diffusive motions. Previous experiments with diffusive stratifications in the 
presence of a slope, and the equivalent case of heating a stable salinity gradient from 
the side, have revealed that layers were formed in those situations. It has been stated 
(Turner 1973) that the finger and diffusive types of convection are similar in the 
large, and the observations reported in this paper add another example of this 
similarity. 

One of the reasons why this study was undertaken is that it seems to be one of the 
more simple ways of investigating some of the effmts of horizontal inhomogeneities 
in the double-diffusive system. Even in this relatively simple case the experiments 
reveal a wide range of phenomena. We find that the scale of the layers depends on 
both the angle of the slope and the properties of the interior stratification. The 
horizontal extent of the layers also depends on the form of the interior stratification. 
Perhaps most striking of all are the relatively large velocities and vigorous convection 
driven by molecular processes in a stably stratified fluid merely through the presence 
of an insulating sloping boundary. 

This work was carried out while J. E. W. was visiting DAMTP on a NATO Science 
Fellowship granted by the Royal Norwegian Council for Scientific and Industrial 
Research. Financial support was also provided by the British Admiralty. This work 
has benefited from discussion with Dr H. E. Huppert, who very generously allowed 
us access to his notes containing the time-dependent solutions given in 0 2. 

Appendix. Stability of the slope flow 
The most amenable case for study is the low-Gp diffusive stratification. Here the 

slope flow is upwards a t  all times and perturbation of the long time solution reveals 
that the flow can become unstable, drawing its energy from the horizontal gradients 
of T and 8 in a manner similar to that described by Thorpe et al. (1969). 

Consider the solutions (2.13)-(2.15). It is seen that the flow region may be separated 
into two parts: a boundary-layer region of thickness 6 N M-1 in which the normal 
derivatives of the local T and S fields practically vanish, and an outer region defined 
by 6 c q < 1, where 

representing a penetration depth of the transient T and S parts. Here the velocity 
essentially vanishes and aT/aq and aS/aq are approximately constant. Assuming 
now that 6 < 1 and taking 1 to be ‘frozen’, we investigate the stability of the solu- 
tions in the outer region when subject to infinitesimal steady disturbances of the form 
f ( q )  exp (ikg), where k is a real wavenumber. We restrict ourselves to a situation with 
strong vertical stability such that the Stratification forces the perturbations into thin, 
elongated cells. In  this case we may neglect horizontal variations compared with 
vertical variations in the perturbation equations (see Hart 1971). We shall also assume 
that the slope is nearly vertical, i.e. that E = i n  - 8 is small. Essentially by applying 
Hart’s arguments, we may, when 6 is sufficiently small, obtain a first approximation 
by requiring that the perturbation stream function vanishes at 7 = 0, 1. This finally 
leads to an eigenvalue equation 

1 = 2{( 1 - 7A) K T  t / (  1 - A)}*, (A 1) 

(1 - r)* s2A2k2Rs = 4ka + 4n2n2Rs, n = 1,2, . . ., (A 2) 
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where we have used the fact that A < 7-l. The X-Rayleigh number in (A 2 )  is defined 
by R, = - gys 14 /v~s  and k has been non-dimensionalized by 1-l. The double-diffusive 
effect on the stability problem is obvious, since for 7 = 1 ,  (A 2 )  has no solution for 
R, > 0. 

The analogy between this problem and the sideways-heated salinity gradient 
becomes clear if we introduce the horizontal T-difference AT, associated with the 
imposed flux due to the tilting of the boundary. From (2 .14 )  we obtain in our approxi- 
mation 

An appropriate T-Rayleigh number may now be defined by 
(A 3 )  

(A 4) 

ATH = (1  - 7 )  ~ Y T  1. 

R, = gATH l 3 /VK~ = €AT( 1 - 7 )  R,. 
By substituting into (A 2 ) ,  we find a critical Rayleigh number 

for 

which is formally identical to the marginal-stability criterion obtained by Thorpe 
et al. (1969)  and Hart (1971)  in the limit of large solutegradients. 

The vertical scale of the problem is h = nl/k, since the slope is nearly vertical. 
Assuming that RT = PT, we find a layer thickness 

n 
h =  

For the parameter regime we used, (A 7)  implies that h is typically of order a few 
millimetres. A comparison with figure 2 is tempting, since we believe that our heurist,ic 
approach, at least qualitatively, reveals the physics of the problem. It must be stressed, 
however, that these experimental runs are outside the range of our asymptotic 
theory. In  fact, to meet more rigorously the requirements implied by the analysis, 
quite a long time would have to elapse before instability manifested itself, and our 
assumption of a quasi-steady salt-sugar experiment could be violated. 
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